
ECE 5780 Lab 2 Report 

Henry Riker​
A02205299 

Jonathan Newman​
A02300100 

 
Lab Objectives. 
The purpose of this lab is to learn how to generate audio output via a DAC and an audio 
amplifier using FreeRTOS, Keil uVision, and the STM32L476 Nucleo-64 Board. In this lab, we 
were tasked with adding a third functionality to our system from the previous lab: a 440Hz sine 
wave emitted through a speaker connected to the circuit with an op-amp. 
 
Procedure. 
Provided in this lab was a manual for the lm326 speaker we used. On page 10 of this manual, 
we found an example circuit diagram using a single input to drive the speaker through the 
op-amp. We wired our circuit to match this diagram almost exactly, using a discrete voltage 
divider in lieu of a potentiometer. 
 

 
Figure 1. The diagram on page 10 of the LM386 manual that inspired our circuit design. 

 
The LM386 opamp has a minimum gain of 20, and the GPIO pins of the Nucleo board can 
output a maximum of 3.3 V. This means that without a voltage divider, we would be cooking our 
speaker with 66 V, far above its maximum voltage rating. Our voltage divider was built out of a 
222 ohm resistor and a 10 ohm resistor, with a gain of 0.0431, ensuring that no matter how 
badly our code failed, our speaker would only undergo 2.845 V. 



 
Our starting place was our code for Lab 1. In Lab 1, we had already programmed two tasks that 
ran simultaneously. One of them ran the button and detected presses, and the other ran the 
LED. It would be relatively easy, we thought, to add a third function that played a sine wave on 
the speaker. 
 
We used a sine table generator (which was also provided in the lab description) to generate a 
sine table. At first, we generated a table with 64 entries, however; we later decided that it would 
be easier to generate a table with 360 entries. That way, the variable we used to call from the 
table could simply be the number of degrees through the sinewave to which we wanted to set 
the speaker. We wrote a function, lookup_sine(), that returned the desired degree value from the 
table. 
 
Page 515 of the Zhu textbook shows how to enable DAC_OUT2. However, DAC_OUT2 is 
connected to GPIO pin A5 in its analog mode, which happens to be the same pin that our LED 
is using. Not wanting to sinusoidally cycle our LED, we decided to instead modify the code from 
the book to enable DAC_OUT1, which is tied to pin A4. We also copied code from the previous 
page, but realized that it was written for an incomplete sine table, and so we simplified it greatly 
so that only the necessary lines were in our code. 
 
From there, we consulted the Zhu textbook further and learned how to initialize our timer. We 
did this, and wrote a SystemCoreClockUpdate(); in main() to reset it. After this, we spent over 
an hour fighting our own misunderstanding of units and c function prototypes until our code was 
once again able to compile. 
 
In class the following day, Dr. Phillips recommended the use of the Nucleo’s onboard HSI clock, 
as the system clock was already in use by FreeRTOS. We also calculated in class a prescalar of 
568. We returned to the lab and updated our code to make use of this information, but we were 
then corrected by many of our classmates and told that it would be better to set our PSC to 18 
(effectively multiplying by a factor of 19) and our ARR to 18 as well (effectively multiplying by 19 
again). We would later learn that the majority of our classmates had corrected us erroneously, 
and that the ARR should be set higher than 18. Our suspicion of where this erroneous belief 
originated is an equation on page 517 of the Zhu textbook, which correctly illustrates that the 
use of the HSI clock with the PSC and ARR both set to 18 will produce an interrupt frequency of 
44.3 kHz. 
 



 
Figure 2. The equation in the Zhu textbook that we suspect led our classmates astray. 

 
At this point, our code compiled, but our circuit made no noise. After an embarrassing amount of 
debugging, we realized that the problem was that while we had written a function for the 
speaker, we had never actually used xTaskCreate() to turn it into a third function. We remedied 
this simple error and suddenly our code ran. 
 
However, our code still did not do anything. The code that was copied from Lab 1 (the task 
watching the button and the task running the LED) worked just fine, implying that the error was 
in our newly implemented functions. We debugged for some time, but ended up going home 
unsuccessful. One thing we did notice, however, is that our “degrees” variable (indicating which 
value to pull from the sine table) would sometimes set itself to random numbers during lines of 
code that were not supposed to affect it. 
 
Before we left the lab for the day, we decided to test our speaker with an oscilloscope to see 
what we could hear. True to our expectations, there was no major signal. There was, however, a 
significant amount of noise with a frequency of 83 MHz. As far as we could tell, our oscilloscope 
was acting as an FM radio antenna. 
 



 
Figure 3. FM radio waves on our oscilloscope. Note the frequency modulation. 

 
Jon resolved to continue debugging until we successfully got a signal. After reviewing the timer 
initialization code he realized that we had not enabled the capture compare interrupt. 
Additionally, he corrected some minor typos that could potentially affect the code. Finally, he 
added code to start the software trigger. After making these changes the speaker finally made a 
noise. However, the note played by the speaker was garbled and noticeably lower than the 
desired 440 Hz signal. Upon closer inspection with the oscilloscope, we found that we had 
created a sine wave, but it was only being transmitted one-third of the time. 
 



 
Figure 4. One third of a successful output signal. 

 
Seeing that our “neutral” output voltage was slowly climbing, we turned the device back on via 
the onboard button and took another sample over a longer period of time. Zooming out led us to 
another surprise. Instead of one sinewave, we had managed to create two. One of them had a 
very high frequency and was only present one-third of the time, and another had a much lower 
frequency and was present for the other two-thirds of the time. 
 

 
Figure 5. Two alternating sinewaves. 



 
Two days later, Henry came to the lab early for the sake of showing this error to Dr. Phillips. 
However, he mistakenly ran old code, resulting in complete failure of the circuit. Henry began 
debugging, noting some details that we had not yet noticed. Eventually, Jon showed up as well 
and discovered Henry’s error. Applying his tweaks to the more current code resulted in an even 
more perplexing scenario. Suddenly, we had an output waveform, and we were able to tune it to 
roughly 440 Hz (467 Hz) before it inexplicably stopped responding to any tweaks of PSC or 
ARR and stubbornly held frequency. 
 

 
Figure 6. A waveform best described as “horrible”. 

 
Ready to give up, Henry went and summoned Dr. Phillips in the hopes that our waveform would 
merit partial credit. We were able to successfully tune it down to 440 Hz by adjusting 
configTICK_RATE_HZ in FreeRTOSConfig.h, literally slowing down the entire microcontroller. 
However, upon Dr. Phillips’ arrival, he pointed out that we had not correctly handled our 
interrupts. In fact, we had not even implemented an interrupt handler at all, instead 
implementing the sine wave in the same task that we used to enable the LED. Henry was not 
available to finish the project, but Jon was willing to attempt to implement an interrupt handler in 
the limited time that we had remaining. 
 
Fortunately, most of the requisite code had already been written, it had just been implemented in 
the wrong function. Jon began by following the template found in page 519 of the textbook.  



 
Figure 7. Example code from the Zhu textbook 

 
However, he quickly ran into an issue. The NVIC_EnableIRQ() function requires an argument in 
the form TIMx_IRQn. However, TIM1_IRQn does not exist, and the code would not compile with 
this argument. Jon quickly found that TIM4_IRQn raises no errors, and so he opted to use timer 
4 instead. This meant that he needed to modify the existing code to use timer 4 instead of timer 
1.  Fortunately, this was a relatively simple change. After creating and enabling the interrupt 
handler, Jon moved the necessary code to the handler. 
 
When we tested the code with these changes, we found that we no longer had the high 
frequency signal, and we had a sine wave of roughly the right frequency. Though the sine wave 
was messier than we would like, this was considerable progress.  



 
Figure 8. Our code produced a sine wave, but not as clean as desired. 

 
 

Fortunately, this issue was easy to fix as we realized that the software trigger was still enabled 
in the task that handled the LED. After moving the software trigger and a little light debugging, 
we finally achieved what could only be described as a big, beautiful sine wave.  
 
As a finishing touch, we modified the prescaler and auto-reload register to get as close to the 
desired 440 Hz frequency as possible. We eventually settled on a prescaler of 7 and an 
auto-reload register value of 18. With some quick arithmetic, we find that this should give us a 
frequency of about 1.6 kHz, but in practice this gave us a frequency of about 430 Hz. We have 
no idea why the actual frequency is so different from the expectation. Though 430 Hz is a little 
flat, the difference in pitch is barely noticeable. Finally, we modified our look-up table to reduce 
the amplitude of the wave and add a DC offset. This was done to prevent the op-amp from 
railing. Upon testing, the waveform both looked and sounded as desired. 
 



 
Figure 9. Successful output of a 440 Hz 64-step unclipped sine wave. 

 
 
Conclusion. 
During this lab, we have modified the code from the previous lab to play a roughly 440 Hz sine 
wave via an external speaker. We accomplished this by implementing both a DAC and a timer 
interrupt in software. We also created an external op-amp circuit to interface between the analog 
signal and the speaker. 



main.c

#include "stm32l476xx.h"

#include "setup.h"

#include "FreeRTOS.h"

#include "semphr.h"

#include "stdlib.h"

#include "portmacro.h"

void prvSetupHardware(void);

void readButton(void);

void writeLED(void);

void DAC_Channel1_Init(void);

void speaker(void);

uint32_t lookup_sine(uint32_t*, int);

void TIM4_Init(void);

static int LEDState = 0;

static int debounce = 0;

uint16_t degrees = 0;

uint32_t sine_table[360] = {0x400, 0x412, 0x424, 0x436, 0x447, 0x459, 0x46b, 0x47d,

0x48f, 0x4a0, 0x4b2, 0x4c3, 0x4d5, 0x4e6, 0x4f8, 0x509,

0x51a, 0x52b, 0x53c, 0x54d, 0x55e, 0x56f, 0x580, 0x590,

0x5a0, 0x5b1, 0x5c1, 0x5d1, 0x5e1, 0x5f0, 0x600, 0x60f,

0x61f, 0x62e, 0x63d, 0x64b, 0x65a, 0x668, 0x676, 0x684,

0x692, 0x6a0, 0x6ad, 0x6ba, 0x6c7, 0x6d4, 0x6e1, 0x6ed,

0x6f9, 0x705, 0x710, 0x71c, 0x727, 0x732, 0x73c, 0x747,

0x751, 0x75b, 0x764, 0x76e, 0x777, 0x780, 0x788, 0x790,

0x798, 0x7a0, 0x7a7, 0x7af, 0x7b5, 0x7bc, 0x7c2, 0x7c8,

0x7ce, 0x7d3, 0x7d8, 0x7dd, 0x7e2, 0x7e6, 0x7ea, 0x7ed,

0x7f0, 0x7f3, 0x7f6, 0x7f8, 0x7fa, 0x7fc, 0x7fe, 0x7ff,

0x7ff, 0x800, 0x800, 0x800, 0x7ff, 0x7ff, 0x7fe, 0x7fc,

0x7fa, 0x7f8, 0x7f6, 0x7f3, 0x7f0, 0x7ed, 0x7ea, 0x7e6,

0x7e2, 0x7dd, 0x7d8, 0x7d3, 0x7ce, 0x7c8, 0x7c2, 0x7bc,

0x7b5, 0x7af, 0x7a7, 0x7a0, 0x798, 0x790, 0x788, 0x780,

0x777, 0x76e, 0x764, 0x75b, 0x751, 0x747, 0x73c, 0x732,

0x727, 0x71c, 0x710, 0x705, 0x6f9, 0x6ed, 0x6e1, 0x6d4,

0x6c7, 0x6ba, 0x6ad, 0x6a0, 0x692, 0x684, 0x676, 0x668,

0x65a, 0x64b, 0x63d, 0x62e, 0x61f, 0x60f, 0x600, 0x5f0,

0x5e1, 0x5d1, 0x5c1, 0x5b1, 0x5a0, 0x590, 0x580, 0x56f,

0x55e, 0x54d, 0x53c, 0x52b, 0x51a, 0x509, 0x4f8, 0x4e6,

0x4d5, 0x4c3, 0x4b2, 0x4a0, 0x48f, 0x47d, 0x46b, 0x459,

0x447, 0x436, 0x424, 0x412, 0x400, 0x3ee, 0x3dc, 0x3ca,

0x3b9, 0x3a7, 0x395, 0x383, 0x371, 0x360, 0x34e, 0x33d,

0x32b, 0x31a, 0x308, 0x2f7, 0x2e6, 0x2d5, 0x2c4, 0x2b3,

0x2a2, 0x291, 0x280, 0x270, 0x260, 0x24f, 0x23f, 0x22f,

0x21f, 0x210, 0x200, 0x1f1, 0x1e1, 0x1d2, 0x1c3, 0x1b5,

0x1a6, 0x198, 0x18a, 0x17c, 0x16e, 0x160, 0x153, 0x146,

0x139, 0x12c, 0x11f, 0x113, 0x107, 0xfb, 0xf0, 0xe4,

0xd9, 0xce, 0xc4, 0xb9, 0xaf, 0xa5, 0x9c, 0x92,

0x89, 0x80, 0x78, 0x70, 0x68, 0x60, 0x59, 0x51,

0x4b, 0x44, 0x3e, 0x38, 0x32, 0x2d, 0x28, 0x23,

0x1e, 0x1a, 0x16, 0x13, 0x10, 0xd, 0xa, 0x8,

0x6, 0x4, 0x2, 0x1, 0x1, 0x0, 0x0, 0x0,

0x1, 0x1, 0x2, 0x4, 0x6, 0x8, 0xa, 0xd,

0x10, 0x13, 0x16, 0x1a, 0x1e, 0x23, 0x28, 0x2d,

0x32, 0x38, 0x3e, 0x44, 0x4b, 0x51, 0x59, 0x60,

0x68, 0x70, 0x78, 0x80, 0x89, 0x92, 0x9c, 0xa5,

1



0xaf, 0xb9, 0xc4, 0xce, 0xd9, 0xe4, 0xf0, 0xfb,

0x107, 0x113, 0x11f, 0x12c, 0x139, 0x146, 0x153, 0x160,

0x16e, 0x17c, 0x18a, 0x198, 0x1a6, 0x1b5, 0x1c3, 0x1d2,

0x1e1, 0x1f1, 0x200, 0x210, 0x21f, 0x22f, 0x23f, 0x24f,

0x260, 0x270, 0x280, 0x291, 0x2a2, 0x2b3, 0x2c4, 0x2d5,

0x2e6, 0x2f7, 0x308, 0x31a, 0x32b, 0x33d, 0x34e, 0x360,

0x371, 0x383, 0x395, 0x3a7, 0x3b9, 0x3ca, 0x3dc, 0x3ee};

//Turns LED on and off based on LEDState

void writeLED(void){

while(1){

if(digitalRead(GPIOC, 13)){

if(LEDState != 0){

//Turn LED on

digitalWrite(GPIOA, 5, 1);

}

else{

//Turn LED off

digitalWrite(GPIOA, 5, 0);

}

}

}

}

//Interrupt Handler

void TIM4_IRQHandler(){

//If Sound is supposed to be on

if((TIM4->SR & TIM_SR_CC1IF)!=0){

//Send Digital Value to DAC

DAC->DHR12R1 = sine_table[degrees]+75;

if(LEDState != 0){

//Start Software Trigger

DAC->SWTRIGR |= DAC_SWTRIGR_SWTRIG1;

}

//Increment sine wave

degrees+=6;

//Ensure degrees is always between 0 and 360

if(degrees >=360){

degrees-=360;

}

//Clear CC1IF Flag

TIM4->SR &= ~TIM_SR_CC1IF;

}

//If update has occured

if((TIM4->SR & TIM_SR_UIF)!=0){

//Clear Update Inturrupt Flag

TIM4->SR &= ~TIM_SR_UIF;

}

2



return;

}

//Toggles LEDState whenever button is pressed

void readButton(void){

while(1){

if (!digitalRead(GPIOC, 13) && !debounce){

if(LEDState == 0){

LEDState = 1;

}

else{

LEDState = 0;

}

debounce = 1;

}

if(digitalRead(GPIOC, 13)){

//delay_ms(10);

debounce = 0;

}

}

}

void prvSetupHardware(void)

{

//Enable HSI16 clk

RCC->CR |= RCC_CR_HSION;

//Loop Until Clock is Ready

while(!(RCC->CR & RCC_CR_HSIRDY));

//Enable DAC Channel 1

DAC_Channel1_Init();

//Enable Timer 4

TIM4_Init();

//Enable GPIO A&C Clocks

RCC->AHB2ENR |= RCC_AHB2ENR_GPIOAEN;

RCC->AHB2ENR |= RCC_AHB2ENR_GPIOCEN;

//Enable LED (Pin A5)

pinMode(GPIOA, 5, 1);

setOutputType(GPIOA, 5, 0);

//Enable Push Button (Pin C13)

pinMode(GPIOC, 13, 0);

}

//DAC Channel 1 Initialization; DAC_OUT1 = PA4

void DAC_Channel1_Init(void){

//DAC Clock Enable

RCC->APB1ENR1 |= RCC_APB1ENR1_DAC1EN;

//Disable DAC

3



DAC->CR &= ~(DAC_CR_EN1 | DAC_CR_EN2);

//Set DAC Mode for channel 1

DAC->MCR &= ~(7U);

//Enable Trigger

DAC->CR |= DAC_CR_TEN1;

//Select Software Trigger

DAC->CR |= DAC_CR_TSEL1;

//Enable Channel 1

DAC->CR |= DAC_CR_EN1;

//Enable GPIO A Clock

RCC->AHB2ENR |= RCC_AHB2ENR_GPIOAEN;

//Set GPIO Pin A4 to Analog

GPIOA->MODER |= 3U<<(2*4);

}

//Timer 4 Initialization

void TIM4_Init(void){

//Enable Timer 4 clock

RCC->APB1ENR1 |= RCC_APB1ENR1_TIM4EN;

//Set Counter to Count Up

TIM4->CR1 &= ~TIM_CR1_DIR;

//Prescalar

TIM4->PSC = 7; //May need to change this

//Auto Reload

TIM4->ARR = 18; //Will need to change this

//Clear output comare mode

TIM4->CCMR1 &= ~TIM_CCMR1_OC1M;

//Enable Interrupt

NVIC_EnableIRQ(TIM4_IRQn);

//Select PWM Mode 1

TIM4->CCMR1 |= TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2;

//Output 1 Preload Enable

TIM4->CCMR1 |= TIM_CCMR1_OC1PE;

//Set output to active high

TIM4->CCER &= ~TIM_CCER_CC1NP;

//Enable complementary output of channel 1

TIM4->CCER |= TIM_CCER_CC1NE;

//Enable Main Output

4



TIM4->BDTR |= TIM_BDTR_MOE;

//Output compare registier for channel 1

TIM4->CCR1 = 500; //Change this in the speaker function

//Enable Counter

TIM4->CR1 |= TIM_CR1_CEN;

//Enable Capture Compare 1 interrupt

TIM4->DIER |= (1U<<1);

}

int main(void)

{

//Setup Hardware

prvSetupHardware();

//Update Clock

SystemCoreClockUpdate();

BaseType_t xReturned;

TaskHandle_t xHandle = NULL;

//Create Tasks

xReturned = xTaskCreate(readButton, "Button", 64, NULL, 3, &xHandle);

xReturned = xTaskCreate(writeLED, "LED", 64, NULL, 3, &xHandle);

//Black Magic

vTaskStartScheduler();

for(;;);

return 0;

}

5



setup.c

#include "setup.h"

//#include "stm32l476xx.h"

#define OUTPUT 1

#define INPUT 0

#define PUSHPULL 0

#define OPENDRAIN 1

#define NONE 0

#define PULLUP 1

#define PULLDOWN 2

#define HIGH 1

#define LOW 0

void delay_ms(unsigned int ms){

volatile unsigned i, j;

for(i = 0; i<ms; i++){

for(j = 0; j<800; j++){

}

}

}

void pinMode(GPIO_TypeDef *port,unsigned int pin,unsigned int mode) {

//port->MODER = ...................

//int mask << pin

//moder and mask

//moder or mask

unsigned int mask = (0x1<<(pin*2)) + (0x1<<((pin*2)+1));

port->MODER &= ~mask;

if(mode == OUTPUT){

port->MODER |= 0x1<<(pin*2);

}

}

void setOutputType(GPIO_TypeDef *port,unsigned int pin,unsigned int type) {

//port->OTYPER = ...................

if(type == PUSHPULL){

unsigned int mask = 0xFFFFFFFE; // 4294967294;

mask = mask << pin;

mask = mask + ((1<<pin)-1);

port->OTYPER &= mask;

}

else if(type == OPENDRAIN){

unsigned int mask = 1;

mask = mask << pin;

port->OTYPER |= mask;

}

}

void setPullUpDown(GPIO_TypeDef *port, unsigned int pin, unsigned int pupd) {

//port->PUPDR = ...................

unsigned int mask = (0x1<<(pin*2)) + (0x1<<((pin*2)+1));

port->PUPDR &= ~mask;

if(pupd == 1){

6



port->PUPDR |= 0x1<<(pin*2);

}

if(pupd == 2){

port->PUPDR |= 0x1<<((pin*2)+1);

}

// unsigned int fmask = 0xFFFFFFFC + pupd;

// unsigned int omask = pupd;

// fmask = fmask << pin;

// fmask = fmask << pin; //henry thinks he's funny

// omask = omask << pin;

// omask = omask << pin;

// unsigned int one = 1;

// fmask = fmask + (((one<<pin)<<pin) - one);

// port->OTYPER &= fmask;

// port->OTYPER |= omask;

}

void digitalWrite(GPIO_TypeDef *port, unsigned int pin, unsigned int value) {

//port->ODR = ...................

unsigned int mask = 0x1<<pin;

port->ODR &= ~mask;

if(value == 1){

port-> ODR |= mask;

}

}

unsigned int digitalRead(GPIO_TypeDef *port,unsigned int pin) {

//return ...................

unsigned int mask = port->IDR;

mask = mask >> pin;

mask = mask %2;

return mask;

}

7



setup.h

#ifndef SETUP_H

#define SETUP_H

#include "stm32l476xx.h"

#define OUTPUT 1

#define INPUT 0

#define PUSHPULL 0

#define OPENDRAIN 1

#define NONE 0

#define PULLUP 1

#define PULLDOWN 2

void pinMode(GPIO_TypeDef *port,unsigned int pin,unsigned int mode);

void setOutputType(GPIO_TypeDef *port,unsigned int pin,unsigned int type);

void setPullUpDown(GPIO_TypeDef *port,unsigned int pin,unsigned int pupd);

void digitalWrite(GPIO_TypeDef *port,unsigned int pin,unsigned int value);

unsigned int digitalRead(GPIO_TypeDef *port,unsigned int pin);

void delay_ms(unsigned int ms);

#endif

8


