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Rules of Engagement

You may discuss the problems below with anyone in the following set of people:

P = {Anyone currently enrolled in MATH 3310,

Heidi Anderson, Ella Leonelli, Elsa Schutfort, Erin Pitts, Brent Thomas}.

The documentation of your adventure should be created by teams of at most four and are to be submitted
by Wednesday May 1, 2024 as a pdf via Canvas (the way we’ve done all semester). One submission per team.

No outside resources are to be used on this Experience. Try to get through this with your brain and the
brains of your team (if you choose to be part of one).

1 Preparing for a Math Party

During your last adventure you had so much fun playing games that you have decided to find new ways to
play games with the help of some math. And of course you decide to organize another game night. Since you
already have a variety of games that use dice, you set out to find a way to make the dice more interesting.

Funky Dice

Sub-Adventure 1.1
A 6-sided die labeled with the integers 1, 2, 3, 4, 5, 6 will be called a standard die. The goal for this part
of the Final Adventure is to determine all ways to label a pair of dice with positive integers so that the
probabilities of rolling the usual sums 2, 3, . . . , 12 are the same, but the labels are non-standard.

(a) Let p(x) = x+ x2 + x3 + x4 + x5 + x6, and explain why (p(x))2 is the generating function for the
probabilities of outcomes in rolling a pair of standard dice.

Solution:

p(x) is the generating function for rolling 1 standard die. This is because there are 6 possible
outcomes of rolling a standard die: 1, 2, 3, 4, 5, and 6. Each outcome is equally likely, and
there is only one way to roll each number.

We enumerate the number of ways to achieve each possible outcome of rolling two standard
dice:
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# Rolled # of Ways
1 0
2 1
3 2
4 3
5 4
6 5
7 6
8 5
9 4
10 3
11 2
12 1

The number of ways the dice can be rolled are the coefficients for the generating function.

This means the generating function should be

x2 + 2x3 + 3x2 + 4x5 + 5x6 + 6x7 + 5x8 + 4x9 + 3x10 + 2x11 + x12

This is equal to (p(x))2.

Therefore, (p(x))2 is the generating function for rolling a pair of standard dice.

(b) Let A = (a1, a2, a3, a4, a5, a6) and B = (b1, b2, b3, b4, b5, b6) be two lists of positive integers. Put
pA(x) = xa1 + xa2 + xa3 + xa4 + xa5 + xa6 and pB(x) = xb1 + xb2 + xb3 + xb4 + xb5 + xb6 . Explain
why finding ais and bis such that pA(x)pB(x) = (p(x))2 is relevant this part of the Adventure.

Solution:

(p(x))2 is the generating function for rolling a pair of standard dice.

We want to create a pair of nonstandard dice that act like a pair of standard dice. So they
should have the same generating function as a pair of standard dice.

Therefore, multiplying the generating function of each non-standard die should yield the gen-
erating function (p(x))2 in order to have the same probabilities as a pair of standard dice.

(c) Factor p(x) into irreducible polynomials and use this factorization to help solve for the ais and bis.
Specifically, the factorization will force the form of pA(x) to be something like p1(x)

qp2(x)
rp3(x)

sp4(x)
t,

where 0 ≤ q, r, s, t ≤ 2 and pi(x), for 1 ≤ i ≤ 4, is a factor of p(x). In your solution to this step,
you must motivate why you take this step.

Solution:

Start with the function p(x)

p(x) = x+ x2 + x3 + x4 + x5 + x6

Then, factor out an x.

p(x) = x(x5 + x4 + x3 + x2 + x+ 1)

Split the non-factored term into two pieces.

p(x) = x((x5 + x3 + x) + (x4 + x2 + 1))
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Factor out an x and a 1 to make the terms in parentheses match.

p(x) = x(x(x4 + x2 + 1) + 1(x4 + x2 + 1))

Now factor out the x+ 1.

p(x) = x(x+ 1)(x4 + x2 + 1)

Add and subtract an x3, x2, and x and split up the non-factored terms.

p(x) = x(x+ 1)((x4 − x3 + x2) + (x3 − x2 + x) + (x2 − x+ 1))

Pull out an x2, x, and 1 for each term respectively to make the terms in parentheses match.

p(x) = x(x+ 1)(x2(x2 − x+ 1) + x(x2 − x+ 1) + 1(x2 − x+ 1))

Now factor out the x2 − x+ 1.

p(x) = x(x+ 1)(x2 − x+ 1)(x2 + x+ 1)

Now we have a factorization that looks like the form of

p(x) = p1(x)p2(x)p3(x)p4(x)

So we’ll throw in the labels given by the question and we get that our generating function pA(x)
is in the form of

pA(x) = xq(x+ 1)r(x2 − x+ 1)s(x2 + x+ 1)t

(d) Begin to reduce the possibilities for q, r, s, and t by using information from pA(1) and pA(0). Note
that, on one hand pA(1) = 1a1 + 1a2 + 1a3 + 1a4 + 1a5 + 1a6 = 6 (since ai > 0), and on the other
hand we have pA(1) = p1(1)

qp2(1)
rp3(1)

sp4(1)
t. Similarly, there are two ways to view pA(0).

Solution:

We know that pA(0) = 0, because ai > 0. This means there must be an x term, otherwise pa(0)
would equal 1. So 1 ≤ q ≤ 2 in order for there to be an x term.

However, because the other die should also have pB(0) = 0, the other die must also have an x
term. Therefore, q = 1.

Additionally, because pA(0) = 0, there cannot be a 0 term on the die at all. Otherwise, pA(0)
would have to be ≥ 1.

Finally, because pA(1) = 6, the die has to be 6-sided. Otherwise the 1ai terms would not add
up to 6.
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(e) List all possible ways to label a pair of dice so that the probabilities of obtaining the sums
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 are 1

36 ,
2
36 ,

3
36 ,

4
36 ,

5
36 ,

6
36 ,

5
36 ,

4
36 ,

3
36 ,

2
36 ,

1
36 , respectively. One such way

will be the standard way. In your solution for this step, explain why you have proved that the la-
bels you have found are the only possible ones that give the desired probabilities for roll-outcomes.

Solution:

Now, we can use the information listed above to find the dice that meet the requirements.

Let Q= x, R= x+ 1, S= x2 − x+ 1, and T= x2 + x+ 1.

Using these terms, we will list all the possible dice pairs that meet the requirement of containing
1 Q. In each case, there must not be more than 2 instances of R, S, or T in order to meet the
requirement of 0 ≤ q, r, s, t ≤ 2.

Below we list both pA(x) and pB(x) to avoid computing duplicates. Each pA(x) has a pB(x)
pair. So if a setup appears on the pB(x) side, we do not need to check if it is valid because we
already check that dice pair.

pA(x) pB(x) pA(x) Expanded
1 Q QRRSSTT x
2 QR QRSSTT x+ x2

3 QRR QSSTT x+ 2x2 + x3

4 QRS QRSTT x+ x3

5 QSS QRRTT x− 2x2 + 3x3 − 2x4 + x5

6 QRRS QSTT x+ x2 + x4 + x5

7 QRSS QRTT x− x2 + x3 + x4 − x5 + x6

8 QRST QRST x+ x2 + x3 + x4 + x5 + x6

9 QSST QRRT x− x2 + 2x3 − x4 + 2x5 − x6 + x7

10 QRRSS QTT x+ 2x4 + x7

11 QRRST QST x+ 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + x7

12 QRSST QRT x+ x3 + x4 + x5 + x6 + x8

13 QRRSST QT x+ x2 + x3 + 2x4 + 2x5 + 2x6 + x7 + x8 + x9

14 QRRSTT QS x+ 3x2 + 5x3 + 6x4 + 6x5 + 6x6 + 5x7 + 3x8 + x9

Now that we have a list of all the dice, we can remove the die that do not fit the requirements.
First, dice with negative values do not make sense in the context of this problem (as no die can
exist with a negative number of faces), so we will remove them. Second, we found that the dice
must contain 6 sides, so we will remove dice that have more or less sides.

After doing this, we are left with 2 pairs of dice. These pairs of dice are option 8 and option
12.

The build for option 8 is

pA(x) = QRST

pA(x) = x(x+ 1)(x2 − x+ 1)(x2 + x+ 1)

pA(x) = x+ x2 + x3 + x4 + x5 + x6

This is just a standard pair of dice. So option 8 is the set of standard dice.
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The build for option 12 is

pA(x) = QRSST

pA(x) = x(x+ 1)(x2 − x+ 1)(x2 − x+ 1)(x2 + x+ 1)

pA(x) = x+ x3 + x4 + x5 + x6 + x8

and

pB(x) = QRT

pB(x) = x(x+ 1)(x2 + x+ 1)

pB(x) = x+ 2x2 + 2x3 + x4

That means the only other possible set of dice that meet the requirements is a pair of 6-sided
dice where the first die has the sides [1, 3, 4, 5, 6, 8] and the second die has the sides [1, 2, 2, 3, 3, 4].
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Mastering “Eeny, meeny, miney, moe”

Sub-Adventure 1.2
As you continue preparing for your game night with your friends, you decide that you need a way to
choose which player will go first. Of course, the first thing you think about to choose someone fairly is
the classic selection strategy “Eeny, meeny, miney, moe.” You decide that you will put all of your friends
in a circle and number them 1 to n. Starting with the friend number 1 you will go around removing
every other person from the circle until only one person is left. The last person in the circle will be the
first player. To gain a competitive advantage you decide that you will find a formula, S(n), to describe
the position that will be last in the circle if there are n people in the circle to start. That way you will be
able to make yourself first player without anyone realizing what you are doing. You begin by calculating
S(4) = 1 and S(7) = 7. Give a formula for S(n).

Solution:

Lemma 1: S(2k) = 1 for k ∈ Z≥0

Proof for Lemma 1:

Start with a circle of 2k people and let n = 2k. For ease of understanding, we will relabel people to
have the first person labeled 0 and the last person labeled n− 1.

We will begin by going around the circle one time. As we go around, we remove every ’odd’ labeled
person. We begin by skipping over player 0, removing player 1, skipping player 2, removing player
3, and so on.

As we get to the end of the circle, we end when player n − 1 is removed. This effectively gives us
a circle that is half the size of the one we started with. Because we started with a circle of base 2,
every time we go around the circle eliminating half of the people, we are left with a circle half the
size. Now, player 1 is the person able to make the first move the next time around the circle.

At this point, all of the odd people are removed from the group, and there are 2k−1 people remaining.
Again, it should be noted that circle of remaining players is a multiple of 2.

Before we go through the circle again, for ease of following, we will renumber the remaining people.
Because everyone left is an even number, we can take their place in the circle and divide it by 2.
Again, we have a circle of size 2k−1. So, after renumbering, everyone will have a number from 0 to
2k−1 incrementing by 1.

We go through the circle again. This time we start with player 0 removing player 1, player 3, player
5, and so on. This round ends when player n − 2 is removed. Once again, player 0 will be the
starting position of the next round. All the of people who are not a multiple of 4 (22) have been
removed and there are 2k−2 players remaining.

This pattern continues until there are two people left. Because we always start with person 0 when
handling a 2k sized circle, person 1 is eliminated and person 0 wins. This shows that no matter
what size of 2k circle we have, player 0 always wins. Thus S(2k) = 1 for k ∈ Z≥0.
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Our circle of friends is not limited to size 2k. If it were we could just sit at the number one position
every time to win. But, we are always able to make a circle of size 2k from our friends. We will
always have a circle of friends that is size 2k +R, where R are the friends ruining our idea to sit at
position 0 to always win.

Our first time going around the circle we will always eliminate the R players. Immediately after
R players are eliminated There is a circle of size 2k remaining. Now that R players are eliminated
the person who we’ve landed on will win. This is due to Lemma 1. The person landed on after R
players are eliminated is person 0 of a newly created 2k sized circle.

Figure 1. Visualization of scenario with 14 players.

Figure 2. Removal of R players leaves 2k players remaining. In this case, R = 6 and k = 3.
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Figure 3. Remaining players can be reindexed as a ring of 2k players, with the first player after R
eliminations being player 0.

We want to be the +1 after R players are eliminated. We multiply R by 2 since we eliminate every
other person, thus there are 2 people in the circle for every 1 person of R eliminated. The person
who wins and where we should sit is

S(n) = 2(R) + 1, n = 2k +R

.

Figure 4. Game is won by player 2(R) + 1. In this case, 2(R)− 1 = 13 (12 in reindexed paradigm).
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2 Invitation Madness

Sub-Adventure 2
You decide to use snail mail to send out invitations to the game night. Since you have never sent a piece
of paper mail before in you life you start to worry that no one will receive the correct invitation. It
occurs to you that there are more ways that every one you invited to receive an invitation addressed to
someone else than there are for everyone to receive the correct invitation. This only serves to exacerbate
your anxiety. You decide to calculate the number of ways that all of the invitations can be sent to the
wrong person.

Determine the number Dn of ways the n invitation can be delivered to your n friends so that no one
gets the invitation actually intended for them.

Moreover, it is asked that you determine Dn in a few ways: one way entails finding a recurrence relation
for Dn, another entails a closed (albeit complicated) formula for Dn, and finally a fairly simple formula
for Dn obtained from the more complicated one.

(a) Prove the recurrence Dn = (n− 1)Dn−1 + (n− 1)Dn−2, for n ≥ 2, with D0 = 1 and D1 = 0,

Solution:

You have n invitations that you need to figure out all the different ways you can send wrong.

Start by singling out invitation 1. This invitation cannot go to person 1, otherwise it would be
sent correctly. That gives us n− 1 people to whom invitation 1 can be sent.

Now let invitation 1 be sent to person m, where m ∈ Z and 1 ≤ m ≤ n.

There are 2 options for what can happen now:

1. Invitation m is sent to person 1.

In this case, invitation 1 and invitation m are sent to the wrong recipients, and now we
just have the remaining n− 2 invitations to send out incorrectly.

By definition, this can be done in Dn−2 different ways.

So in this case, there are (n− 1)Dn−2 ways to send out the wrong invitations.

2. Invitation m is not sent to person 1.

In this case, we have one restriction, invitation m cannot be sent to the first person,
otherwise we would have our first case.

In this case, there are n − 1 invitations that need to be sent to n − 1 people and each
person has one invitation they cannot receive.

That is the same as Dn−1.

So in this case, there are (n− 1)Dn−1 ways to send out the invitations incorrectly.

If we add these two cases together, we get the equation

Dn = (n− 1)Dn−1 + (n− 1)Dn−2

This is the recurrence relation we were trying to prove.
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(b) Derive, from the recurrence in sub-adventure 2(a), this recurrence Dn = nDn−1+(−1)n, for n ≥ 1,
with D0 = 1.

Solution:

Begin with the equation

Dn = (n− 1)Dn−1 + (n− 1)Dn−2

Expand the first term of the right side.

Dn = nDn−1 −Dn−1 + (n− 1)Dn−2

Now, subtract nDn−1 from both sides.

Dn − nDn−1 = −Dn−1 + (n− 1)Dn−2

Pull out a negative on the right side.

Dn − nDn−1 = (−1)(Dn−1 − (n− 1)Dn−2)

Now, the right side of the equation is the same as the left side, just with a negative and down
one index. So we can keep lowering the index by one, if we just multiply by a negative each
time.

The first time going down, that gives us

Dn − nDn−1 = (−1)2(Dn−2 − (n− 2)Dn−3)

Keep going for

Dn − nDn−1 = (−1)3(Dn−3 − (n− 3)Dn−4)

We can keep reducing the index until eventually, we get to this point

Dn − nDn−1 = (−1)n−1(D1 − (n− (n− 1))D0)

Simplify

Dn − nDn−1 = (−1)n−1(D1 −D0)

We know that D1 = 0 and D0 = 1, so we will plug those in.

Dn − nDn−1 = (−1)n−1(0− 1)

Simplify

Dn − nDn−1 = −(−1)n−1

Pull out the −1 from the exponent

Dn − nDn−1 =
−(−1)n

−1

Simplify

Dn − nDn−1 = (−1)n

Page 10



Now, we just need to add the nDn−1 back.

Dn = nDn−1 + (−1)n

And now we have the equation we were trying to derive.

Therefore,
Dn = nDn−1 + (−1)n

is equivalent to
Dn = (n− 1)Dn−1 + (n− 1)Dn−2

(c) Use the Principle of Inclusion-Exclusion to compute a closed formula for Dn.

Solution:
The Principle of Inclusion/Exclusion: Suppose A1, A2, ..., Ak are subsets of U . Then

|A1 ∩A2 ∩ ... ∩Ak| = |U | −
k∑

i=1

|Ai|+
∑
i ̸=j

|Ai ∩Aj |+ ...+ (−1)k|A1 ∩A2 ∩ ... ∩Ak|

We desire to get Dn. This can be achieved using the formula given in class.

Dn = |U |+
n∑

k+1

(−1)k
(
n

k

)
f(k)

It is now up to us to define the terms and simplify algebraically.

First we will look at |U |. The |U | is determined by how many ways there are to send a letter
to everyone. In our case the number of people receiving letters is n. The number of ways we
can send n letters to n people where each person and letter is unique is n!.

|U | = n!

Let Ai be the event that person i gets the correct invitation. A1 would be the event that friend
1 gets the correct invitation. A1 ∩ A2 would be the event that both friend 1 and 2 gets the
correct invitation. A1 ∩ A2 ∩ ... ∩ An would be the event that all n friends receive the correct
invitation.

When 1 friend gets the correct letter, it removes a letter from potentially being sent to any of
the other friends. The other letters can still be sent in any combination as long as the follow
our delivery rules.

A1 = (n− 1)! = f(1)

When 2 friends get the correct letter, it removes two letters from being sent to other friends.
The other letters can still be sent in any combination.

A1 ∩A2 = (n− 2)! = f(2)

This trend follows for k friends.

A1 ∩A2 ∩ ... ∩Ak = (n− k)! = f(k)

Now that we have values for |U | and f(k) we can plug them into are Dn
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Dn = n! +

n∑
k=1

(−1)k
(
n

k

)
(n− k)!

Expanding out the choose function allows us to cancel some terms

Dn = n! +

n∑
k=1

(−1)k
n!

k!(n− k)!
(n− k)!

Dn = n! +

n∑
k=1

(−1)kn!

k!

We can multiply n! by 1 to get a more convenient form

Dn = n!(
(−1)0

0!
) +

n∑
k=1

(−1)kn!

k!

The first addend is the 0th term of the sum from the second addend. Moving the first into the
sum gives us the final equation

Dn =

n∑
k=0

(−1)kn!

k!

(d) Noting that ex has a power series expansion

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · ,

prove that Dn is the nearest integer to n!
e ; that is, show that

Dn =

⌊
n!

e
+

1

2

⌋
.

Solution:
Lemma 2:

ex =

∞∑
k=0

xk

k!

Proof: Left to reader.

This is what we got for Dn:

Dn =

n∑
k=0

(−1)kn!

k!

For this problem we will pull out n! since it is a constant.

Dn = n!

n∑
k=0

(−1)k

k!

Notice that this looks similar to a power series expansion. We can rewrite Dn as

Dn = n!

( ∞∑
k=0

(−1)k

k!
−

∞∑
k=n+1

(−1)k

k!

)
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By Lemma 2, the first sum is just the power series expansion for e−1, so we get

Dn = (n!)
1

e
− (n!)

∞∑
k=n+1

(−1)k

k!

Notice that the remaining sum represents the error and will be largest when n = 1 (only
considering n ≥ 1). When n = 1,

(1!)

∞∑
k=2

(−1)k

k!
≈ 0.36788

Thus, the error at its largest can be accounted for by simply rounding to the nearest integer.
Take our first term - the approximation - and account for the error by adding 1/2 and rounding
down. This ensures that the approximation is rounded to the nearest integer. This gives the
formula

Dn =

⌊
n!

e
+

1

2

⌋

(Now that’s a nice and concise closed formula!)

3 PIE

Once you have the invitation debacle straightened out and you know how to rig the games so you can be first
player, you are chatting with a friend about the game night. She mentions that you should think about pie
for the party. Since you just solved the invitation madness problem using the P.I.E. you didn’t realize she
was talking about the food and you thought she was talking about the counting technique. So you “think
about pie” by solving some more problems using the P.I.E.

Sub-Adventure 3.1
Use the Principle of Inclusion/Exclusion to determine a formula for

{
n
k

}
. (Hint: you should try counting

k!
{
n
k

}
.)

Solution:
We’ll start by counting k!

{
n
k

}
. This is the number of ways to order n labeled balls into k labeled

boxes with none of the boxes empty and was proved in Homework 9. We’ll count this another way
using the Principle of Inclusion/Exclusion.
The Principle of Inclusion/Exclusion: Suppose A1, A2, ..., Ak are subsets of U . Then

|A1 ∩A2 ∩ ... ∩Ak| = |U | −
k∑

i=1

|Ai|+
∑
i ̸=j

|Ai ∩Aj |+ ...+ (−1)k|A1 ∩A2 ∩ ... ∩Ak|

To count k!
{
n
k

}
, we’ll let Ai be the event that the ith box is empty. Thus, |A1∩A2∩...∩Ak| describes

the scenario that every box is non-empty and is equal to k!
{
n
k

}
. In this case U is the number of ways

to order labeled balls into labeled boxes with no restrictions. So, |U | = kn, as proven in Homework
10.
|Ai| is the number of ways to leave the ith box empty. If only one box is empty, then there are k−1
boxes left to order n balls. Of the k boxes, we need to choose 1 of them to be empty. Therefore, the
number of ways to order n balls into k boxes with one box empty is

(
k
1

)
(k − 1)n.

|Ai ∩ Aj | where i ̸= j is the number of ways to leave 2 boxes empty. First choose which boxes are

empty -
(
k
2

)
. This gives us the number of ways to order n balls into k boxes with 2 empty ones is
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(
k
2

)
(k − 2)n.

At this point we can notice the pattern and put all the pieces together using PIE.

k!

{
n

k

}
= |A1 ∩A2 ∩ ... ∩Ak| = kn +

k∑
i=1

(−1)i
(
k

i

)
(k − i)n

Notice that kn is just the i = 0 term in the sum, so we can absorb it into the sum by letting i go
from 0 to k.

k!

{
n

k

}
=

k∑
i=0

(−1)i
(
k

i

)
(k − i)n

We can also rewrite the choose function as k!
i!(k−i)! . This gives us

k!

{
n

k

}
=

k∑
i=0

(−1)i
k!

i!(k − i)!
(k − i)n

To find a formula for
{
n
k

}
from here, all we need to do is divide by k! to get

{
n

k

}
=

k∑
i=0

(−1)i
k!

i!(k − i)!k!
(k − i)n

Simplify one more time to get {
n

k

}
=

k∑
i=0

(−1)i(k − i)n

i!(k − i)!
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Sub-Adventure 3.2
If you are randomly dealt 10 cards from a standard deck1 then what is the probability that you have at
least 1 four of a kind2?

Solution:

Let x be an event where you draw 10 random cards and have at least one four of a kind.

The probability of this event occurring is

p(x) =

(
13
1

)(
48
6

)
−
(
13
2

)(
44
2

)(
52
10

) ≈ 0.01

Now to break this down a bit:

The denominator is the number of total possible ways to draw 10 cards from a deck of 52 cards.

The numerator is the number of possible ways event x can occur.

This works because there are
(
13
1

)
possible ways to select one of the 13 types of card to be the four

of a kind and
(
48
6

)
ways to pick the remaining 6 cards for your hand from the remaining 48 cards of

the deck.

This, however, has an issue of double counting. For example, if we choose the kings in
(
13
1

)
, there

is a scenario in which we pull four aces when picking the remaining 6 cards. However, the same
scenario is counted when we select the aces to be our four of a kind.

To compensate for this double counting that occurs when two four of a kind are pulled, we just need
to subtract one copy.

We do this by selecting all the ways to pick 2 types of cards. That’s
(
13
2

)
and multiply this by the

number of ways to pick the remaining 2 cards. That’s
(
44
2

)
.

So altogether,
(
13
1

)(
48
6

)
−
(
13
2

)(
44
2

)
is the number of ways in which event x can occur.

Therefore, to get the probability of event x happening, we just need to divide
(
13
1

)(
48
6

)
−
(
13
2

)(
44
2

)
by

all possible ways to draw 10 cards.

1A standard deck of card consists of 52 cards in each of four different suits of Spades, Hearts, Diamonds, and Clubs. Each
suit contains 13 cards: Ace, 2,3,4,5,6,7,8,9,10, Jack, Queen, King.

2Four cards of the same value from each of the different suits.
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